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Abstract: The greater integration of solar photovoltaic (PV) systems into low-voltage (LV) distribution
networks has posed new challenges for the operation of power systems. The violation of voltage
limits attributed to reverse power flow has been recognized as one of the significant consequences of
high PV penetration. Thus, the reactive power control of PV inverters has emerged as a viable solution
for localized voltage regulation. This paper presents a detailed study on a typical Malaysian LV
distribution network to demonstrate the effectiveness of different reactive power control techniques
in mitigating overvoltage issues due to high PV integration. The performance of four reactive power
control techniques namely, fixed power factor control, scheduled power factor control, power factor
control as a function of injected active power, and voltage-dependent reactive power control were
analyzed and compared in terms of the number of customers with voltage violations, reactive power
compensation, and network losses. Three-phase, time-series, high-resolution power-flow simulations
were performed to investigate the potential overvoltage issues and to assess the performance of
the adoption of reactive power controls in the network. The simulation results revealed that the
incorporation of reactive power controls of solar PV inverters aids in successfully mitigating the
overvoltage issues of typical Malaysian networks. In particular, the Volt-Var control outperformed the
other control techniques by providing effective voltage regulation while requiring less reactive power
compensation. Furthermore, the comparative analysis highlighted the significance of employing the
most appropriate control technique for improved network performance.

Keywords: LV distribution network; high PV penetration; voltage rise; reactive power control;
PV inverter

1. Introduction

The growing anxieties about the depletion of fossil fuels, greenhouse gas emissions,
and global warming have driven a steep deployment of sustainable energy sources. In
recent years, solar power generation has seen rapid growth due to technological advance-
ments, significant cost reductions in photovoltaic (PV) modules, and strong policy support
from many countries around the world. According to a recent report published by the
International Renewable Energy Agency (IRENA) on the future of solar photovoltaics,
the global installed capacity of solar PVs would increase by six times by 2030 and reach
8519 GW by 2050 relative to the installations in 2018 [1]. In Malaysia, the government has
pledged to reduce the greenhouse gas (GHG) emission intensity of its GDP by 35% by
2030 relative to the emission intensity of its GDP in 2005, with a further 10% reduction if
international technology transfer occurs. Hence, a range of clean energy initiatives has been
launched to promote the usage of PV systems. Furthermore, it is projected that solar PV
will be utilized as a significant contributor to the achievement of the aspirational national
renewable target of 20% of renewable energy by 2025 [2].
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Nevertheless, the high integration of PV systems and their intermittent nature have
posed technical challenges for the distribution network operators (DNOs). Violations of
voltage limits, thermal overloads, and voltage unbalances and fluctuations are some of the
technical issues associated with increased solar power generation [3]. In particular, a high
PV influx could cause reverse power flow when the load is at its minimum and the PV
generation is at its maximum during peak irradiance periods (noon time) [4]. This reverse
power flow could lead to a voltage rise, thus limiting the potential of low-voltage (LV)
grids for higher PV penetration.

Conventionally, various techniques have been adopted to mitigate overvoltage issues
in PV-rich distribution networks. Grid reinforcement, application of on-load tap changers,
autotransformers, voltage regulators, and capacitor banks are some of the techniques
that have been used to alleviate the overvoltage issues [5]. However, these solutions
lead to massive capital investments and require a substantial number of infrastructural
improvements to secure their performance.

The rising level of PV penetration and consequent challenges have accelerated the
incorporation of solar PV inverters with advanced functionalities in order to mitigate
the potential impacts due to high solar PV penetration. Contrary to conventional PV
inverters, modern PV inverters are recognized to be intelligent, as they could provide
more advanced functionalities than merely converting the direct current output of solar
panels into an alternating current. Among the different voltage controls provided by solar
PV inverters, active power curtailment [6–10] and reactive power management [11–20]
have been established as viable solutions for the overvoltage problems associated with
extensive solar PV penetration in LV distribution networks. These techniques could
control the active and reactive power output of the PV inverter and maintain the terminal
voltage of the PV system within the allowable voltage limits. Despite being an effective
technique for mitigating overvoltage issues in highly resistive LV networks, active power
curtailment is not a favorable option for PV owners. Therefore, the reactive power control
of PV inverters has gained much attention for managing overvoltage issues in PV-rich
LV networks. The authors of [11,12] identified the reactive power compensation of PV
inverters as a promising and economically viable solution for managing network voltages.
Nonetheless, the effectiveness of this method usually depends on the grid configuration,
the R/X ratio of the grid, and the reactive power capability of the inverter. In particular, the
inverter’s reactive power capability is constrained by active power generation. If the active
power injection by the solar PV inverter is less than the inverter capacity, the remaining
space could be used for reactive power compensation. Typically, this method could be
introduced at periods where the maximum inverter capacity is not being utilized to deliver
the active power output. It has been reported that, more than 95% of the time, solar PV
inverters are operated below their rated capacities because they do not receive peak solar
irradiance. Thus, the spare capacity of inverters could be adequately utilized at these
times to provide effective voltage management through reactive power compensation.
However, the authors of [13] suggested accommodating oversized solar PV inverters to
ensure efficient reactive power compensation even when delivering the maximum active
power generation at peak irradiance periods.

The fixed power factor control (PFC), PFC as a function of injected active power, and
voltage-dependent reactive power provision (Volt-Var control) are the primary reactive
power support solutions proposed by past researchers. In fixed power factor control, the
solar PV inverters are always operated at fixed, non-unity power factors, whereas in the
PFC as a function of injected active power and Volt-Var controls, the droop settings of
PV inverters are adjusted to allow for effective voltage regulation. The authors of [14–16]
focused on power factor control techniques, while the authors of [17–21] proposed Volt-Var
control to regulate the grid voltage. Much research has been conducted to investigate the
effectiveness of different control techniques in mitigating the overvoltage issues associated
with high PV penetration. In [22], several reactive power control techniques introduced by
certain grid codes were reviewed by using a Danish LV distribution network. The authors
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analyzed the performance of each control technique in terms of grid losses and voltage
variations. In [23], several reactive power control techniques were proposed and adopted in
a single PV plant to investigate their effectiveness in mitigating the overvoltage issues. The
authors of [24] presented a field demonstration of the provision of voltage support through
fixed PFC and Volt-Var control. A similar study was conducted in [25] to investigate the
effectiveness of adopting off-unity power factors to mitigate the overvoltage issues due to
high PV penetration. The voltage regulation capabilities fixed PFC and Volt-Var control
were comparatively assessed in [26] by using the IEEE 13 bus system.

However, it is important to note that excessive reactive power provision could lead to
additional network losses and increase the thermal loading of grid assets [27]. Therefore, it
is imperative to adopt efficient reactive power control techniques that provide effective
voltage control while optimizing unnecessary reactive power compensation. As a result,
different centralized control methods involving optimization techniques [28] and advanced
communication frameworks have been suggested to minimize the power losses associated
with reactive power compensation [29,30]. Even if these controls provide efficient voltage
regulation, the costs associated with the communication infrastructure are very high,
making them pragmatically unrealizable.

In addition, the reactive power compensation of PV inverters is typically constrained
by power factor limitations centered on interconnection guidelines, which weaken the
voltage regulation ability. Thus, battery energy storage systems [31] have been proposed to
assist large-scale PV systems with charging/discharging operations in distribution systems
with high R/X ratios [32].

Concerning the foregoing literature, most of the studies reported were based on IEEE
test cases or US distribution networks where only a limited number of customers were
connected per distribution transformer. The configuration of these networks differs from
that of Malaysian distribution networks, where hundreds of customers are connected
to each distribution transformer. Even though the revised IEEE 1547 standard [33] has
allowed PV inverters to actively participate in the regulation of the grid voltage, this has
not yet been stipulated under the current guidelines of the Malaysian grid code. However,
it is required to adopt different voltage control techniques for mitigating overvoltage
issues due to the increased number of PV installations in the Malaysian distribution
network. As per the knowledge of the authors, these mitigation techniques have not been
evaluated for Malaysian networks. Thus, it is imperative to perform a study in order to
analyze and review the performance of different reactive power control techniques for the
Malaysian context.

Therefore, this paper examines four reactive power control techniques of PV inverters—
namely, fixed PFC, scheduled PFC, PFC as a function of injected active power, and Volt-
Var control—for mitigating overvoltage issues due to the high integration of solar PVs
into Malaysian distribution networks. The performance of these control techniques was
evaluated in terms of the number of customers with voltage violations, reactive power
compensation, and network losses.

The organization of the paper is as follows. Section 2 outlines the research method
in several subsections. The influence of solar power injection and how reactive power
compensation could be used to overcome the voltage rise issues, as well as the Malaysian
test network used to evaluate and compare the performance of different reactive power
control techniques, are described in these subsections. The simulation results are presented
and discussed in Sections 3 and 4, respectively. Finally, the conclusions are drawn in
Section 5.

2. Methodology
2.1. Impact of Solar Power Injection and Reactive Power Compensation on LV Grid Voltage

The impact of PV penetration and reactive power compensation on LV distribution
networks is illustrated using the simple network structure shown in Figure 1. For simplicity,
a single customer with PL and QL demand is connected to the distribution system through
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a conductor with R+ jX impedance. A PV system with a Ppv active power and Qpv reactive
power is connected to the same customer’s connection point.

Figure 1. Representation of a simple network structure.

Assuming that the PV system is connected to the network, the voltage deviation across
the line can be written as follows:

∆V = V1 − V2 = I∗ × (R + jX) (1)

where

I∗ =
(
(PL − Ppv) + j(QL − Qpv)

V2

)∗

By substituting I∗ in Equation (1),

∆V =

(
(PL − Ppv) + j(QL − Qpv)

)∗
V2

× (R + jX) (2)

∆V =
(PL − Ppv)R + (QL − Qpv)X

V2
+ j

(PL − Ppv)X − (QL − Qpv)R
V2

(3)

Considering the real and imaginary parts, ∆V could be written as in Equation (4).

∆V = ∆Vd + j∆Vq (4)

where

∆Vd =
(PL − Ppv)R + (QL − Qpv)X

V2
; ∆Vq =

(PL − Ppv)X − (QL − Qpv)R
V2

(5)

Thus, the magnitude of V1 can be calculated as follows:

V1 =
√
(V2 + ∆Vd)

2 + ∆Vq2 (6)

Since the reactance-to-resistance ratio (X/R) of LV networks is significantly low(
∆Vq ≈ 0

)
, V2 can be simplified as

V2 = V1 − ∆Vd (7)

Moreover, ∆Vd can be approximated by substituting V2 by V1:

∆Vd ≈
(PL − Ppv)R + (QL − Qpv)X

V1
(8)

Then, the voltage at the point of common coupling (V2) can be written as follows:

V2 ≈ V1 −
(

PL − Ppv
)

R +
(
QL − Qpv

)
X

V1
(9)
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When demand is higher than generation, the voltage drops along the feeder, as shown
in Equation (9). However, when PV generation exceeds demand, power flows towards the
substation, resulting in a voltage rise at the point of common coupling (PCC), as expressed
in Equation (10).

V2 ≈ V1 +

(
Ppv − PL

)
R +

(
Qpv − QL

)
X

V1
(10)

This issue becomes aggravated when the voltage rises above the statutory limits with
an increasing level of PV penetration (Ppv � PL). According to Equations (9) and (10),
the net reactive power delivered by the PV inverter and the load has a significant impact
on the PCC voltage. Thus, the reactive power control of PV inverters could be utilized to
maintain the PCC voltage within the permissible limits. If the PCC voltage drops below the
lower voltage limit, the PV inverter could inject reactive power to increase the voltage. On
the other hand, if the PCC voltage exceeds the upper voltage limit, the PV inverter could
absorb reactive power to decrease the voltage.

2.2. Reactive Power Control Techniques

In this study, the following reactive power controls of PV inverters are examined to
mitigate overvoltage issues due to high PV penetration.

2.2.1. Fixed Power Factor Control

The PV inverter is adjusted to operate at a constant power factor. Leading power
factors (to absorb reactive power) are considered to overcome the voltage rise associated
with active power output [34]. In this mode, reactive power absorption is proportional to
the active power generation.

2.2.2. Scheduled Power Factor Control

The power factor of the PV inverter is scheduled to change with the time of the
day [23]. Figure 2 demonstrates a generic power factor schedule that could be adopted
to regulate the grid voltage. In this mode, the power factor is decreased during midday,
where the solar irradiance is expected to be the highest.

Figure 2. A generic power factor schedule for PV inverters.

2.2.3. Power Factor Control as a Function of Injected Active Power

The power factor is adjusted as a function of the active power output of the PV
inverter [23]. Since the active power output is proportional to the PCC voltage, the ab-
sorption of reactive power could be introduced during high solar power generation. A
generic control function, such as that shown in Figure 3, could be utilized to regulate the
grid voltage.
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Figure 3. A generic power factor control as a function of injected active power for PV inverters.

2.2.4. Voltage-Dependent Reactive Power Control (Volt-Var Control)

In this mode, the PV inverter is operated either to inject or to absorb reactive power as
a function of the PCC voltage [17]. The amount of compensated reactive power depends
on the Volt-Var setpoints defined by the user/utility. A generic Volt-Var curve is shown in
Figure 4. As illustrated in the curve, if the terminal voltage drops below the pre-set lower
bound (V3), the inverter injects reactive power to support the voltage at the connection
point. On the contrary, if the terminal voltage exceeds the pre-set upper bound (V4), the
inverter absorbs reactive power to reduce the voltage at the connection point.

Figure 4. A generic Volt-Var curve.

The reactive power injection by the Volt-Var control can be mathematically expressed
as in Equation (11).

Q(t) =



Qmax(t) ; if V(t) ≤ V2
V3−V(t)
V3−V2 Qmax(t) ; if V2 < V(t) ≤ V3

0 ; if V3 < V(t) ≤ V4
−V4−V(t)

V4−V5 Qmax(t) ; if V4 < V(t) ≤ V5
−Qmax(t) ; if V(t) > V5

(11)

where V(t) is the terminal voltage and Q(t) is the calculated reactive power injection by
the Volt-Var control.
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2.3. Performance Metrics

Three performance metrics were used to quantify and compare the performance of
the studied reactive power control techniques.

2.3.1. Number of Customers with Voltage Violations

This metric assesses the daily voltage profile of all customers in the network and
checks compliance with local voltage limits and standards.

2.3.2. Total Daily Average Reactive Power Compensation

This metric calculates the daily average reactive power compensation (Qcomp
avg ) by all

PV inverters connected to the grid and can be expressed as in Equation (12).

Qcomp
avg =

1
T

∫ T

0
Qinv(t) dt (12)

where Qinv is the compensated (absorbed or injected) reactive power.

2.3.3. Total Daily Average Network Loss

This metric assesses the daily average loss of the entire network (Ploss
avg ) and can be

computed using Equation (13).

Ploss
avg =

1
T

∫ T

0
ploss(t) dt (13)

where ploss is the network loss, including the transformer and line losses.
The complete flowchart of the research method is shown in Figure 5. First, a detailed

network model for the selected LV distribution network was developed in the Open
Distribution System Simulation (OpenDSS) software. Then, three-phase time-series power-
flow simulations were performed to investigate the potential overvoltage issues with high
PV penetration. Following the detection of voltage rise issues, each of the above-mentioned
reactive power control techniques of the PV inverters was implemented and adopted to
ensure the statutory voltage limits of the LV distribution grid. The performance of the
adopted control techniques was evaluated and quantified using the three performance
metrics discussed above. Finally, a comparative analysis was carried out to compare the
performance of the studied reactive power controls.

2.4. Test Network

In order to evaluate the effectiveness of the studied reactive power control techniques
in mitigating voltage rise due to high PV penetration, a typical Malaysian LV distribution
network was modeled by using the OpenDSS software interfaced with MATLABTM. The
single-line diagram of the test network is shown in Figure 6. The network comprised four
feeders connected to a 1 MVA, 11/0.433 kV distribution transformer that supplied 124 cus-
tomers via a three-phase connection. The peak demand of the network was presumed to
be 620 kW, with a peak load of 5 kW per customer. Figure 7 demonstrates the one-minute
normalized residential load profile and PV generation profiles under sunny and normal
climatic conditions, which were used to conduct a high-resolution analysis.
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Figure 5. Flowchart of the research method.

In order to investigate the potential impact of high PV penetration in the future, all
of the customers were assumed to have equally rated PV installations on their rooftops.
Therefore, a 7 kWp rated PV system was connected to each household (868 kW total PV
generation) to ensure overvoltage issues at peak irradiance periods. Moreover, all inverters
were assumed to be 10% oversized to provide reactive power support even when delivering
the maximum active power generation.
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Figure 6. Single-line diagram of the test network.
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3. Results

Firstly, three-phase time-series power-flow simulations were performed for the base-
case scenario (without adopting any reactive power controls) considering the daily residen-
tial load and the sunny and normal PV generation profiles. The simulation results were
evaluated using local standards to investigate potential voltage violations due to high PV
integration. According to the guidelines for the interconnection of distributed generators
to a distribution system from the Malaysian electric utility, Tenaga Nasional Berhad,

• The statutory tolerance limits for voltage variation should be between −6% and +10%
(0.94 and 1.1 p.u.).

• DG systems should maintain a power factor ranging from 0.85 lagging to 0.9 leading.

Figure 8a shows the daily voltage profiles of all 124 customers in the LV network for
the sunny climatic condition with no reactive power control. As expected, a significant
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number of customers (66) were recorded as having upper voltage limit (1.1 p.u.) violations
due to the high solar PV penetration. According to the simulation results, the maximum
recorded voltage was reported at the 107th node of the network, which was also the furthest
node from the distribution transformer. The daily variations of the terminal voltage and
the active and reactive power output of the PV inverter connected to the critical node (i.e.,
the 107th node) are shown in Figure 8b.

Figure 8. Daily variations of (a) the voltage of all customer nodes and the (b) terminal voltage and active and reactive power
output of the PV inverter connected to the critical node with no reactive power control for the sunny climatic condition.

Similarly, the daily variations of the voltage of all customer nodes, as well as the
terminal voltage and active and reactive power output of the PV inverter connected to the
critical node, are presented in Figure 9. As per the simulation results, 34 consumers were
recorded as having upper voltage limit violations.

Figure 9. Daily variations of (a) the voltage of all customer nodes and (b) the terminal voltage and active and reactive power
output of the PV inverter connected to the critical node with no reactive power control for the normal climatic condition.

Subsequently, each reactive power control technique was implemented and adopted
to alleviate overvoltage issues for the sunny climatic condition. When implementing the
controls, the most suitable settings were assigned to resolve all voltage issues.

• For the fixed PFC, all PV inverters were operated with a leading power factor of 0.97.
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• For the scheduled PFC, 0.99 and 0.97 leading power factors were assigned for the PF1
and PF2 values, while 8.5, 9.5, 14.5, and 15.5 h were selected for the T1, T2, T3, and
T4 values.

• For the PFC as a function of injected active power technique, leading power factors
of 0.99 and 0.97 were assigned for the PF1 and PF2 values, while 60% and 80% of
the PV output (as a percentage of the rated capacity) were selected for the P1% and
P2% values.

• For the Volt-Var control, the setpoints were adjusted to allow the inverter to start the
reactive power absorption and to absorb the maximum available reactive power when
the voltage reached 1.08 and 1.1 p.u. respectively.

The daily variations of the voltages of all 124 customer nodes and the reactive power
compensation of the PV inverter connected to the critical node for the fixed PFC, scheduled
PFC, PFC as a function of injected active power, and Volt-Var control are shown in Figure 10.

Similarly, the daily variations of the terminal voltage and active and reactive power
output of the PV inverter connected to the critical node for all of the control techniques are
shown in Figure 11.
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4. Discussion

By examining the voltage profiles presented in Figure 10, it was revealed that the
upper voltage limit violations observed in Figure 8a were completely suppressed after the
adoption of all four reactive power control techniques with their corresponding settings.
As depicted in Figure 10, in the PFC techniques, all customers experienced equal reactive
power absorption, whereas in the Volt-Var control technique, only customers with higher
voltages were significantly involved in the reactive power absorption. Furthermore, it
could be clearly seen that, in the Volt-Var control, the reactive power absorption of PV
inverters connected closer to the distribution transformer was negligible owing to the
low terminal voltages. According to the simulation results, the maximum reactive power
absorption of 3.323 kVar was observed at the critical node with the Volt-Var control. It was
43.15% of the inverter’s rated capacity of 7.7 kVA.

As illustrated in Figure 11, all control techniques were capable of preventing overvolt-
age problems while providing the maximum active power generation. In fact, due to the
sufficient reactive power capability, the employment of overrated inverters allowed for a
complete active power generation.

Table 1 summarizes and compares the performance of the studied reactive power
control techniques for PV inverters.

Table 1. Simulation results of the reactive power control techniques.

Parameter Base Case

Reactive Power Control Technique

Fixed
PFC

Scheduled
PFC

PFC as a Function of
Injected Active Power

Volt-Var
Control

Number of customers with voltage violations 66 0 0 0 0

Total daily average reactive power
absorption (kVar) 0.000 63.484 48.107 48.512 44.103

Total daily average network loss (kW) 9.804 10.866 10.616 10.614 10.829

Power factor limit
Max

1.00 0.97
1.00 1.00 1.00

Min 0.97 0.97 0.90

As indicated in Table 1, the highest daily average reactive power compensation of
63.484 kVar was shown with the fixed PFC technique. In this mode, the reactive power
was absorbed regardless of the active power generation. However, in the scheduled and
PFC as a function of injected active power control techniques, the unnecessary reactive
power provision was alleviated by adjusting the droop set points to avoid the absorption
of reactive power during low PV generation. This could be clearly seen in Figure 10b,c.
As a result, reductions of 24.2% and 23.6% in the daily average reactive power absorption
were achieved for the scheduled and PFC as a function of injected active power control
techniques relative to the fixed PFC technique, respectively.

In scheduled PFC, the selection of power factor values and scheduling times depends
on the experience of the distribution engineer. Nevertheless, an unnecessary reactive power
absorption could still occur in this mode when peak PV generation is not expected to occur,
such as on sunny days. The main drawback of the PFC techniques is the provision of
location-free reactive power references irrespective of the local voltage. In addition, these
control techniques needlessly absorb reactive power at times when peak PV generation
coincides with high demand where voltage violations may not occur. The minimum
reactive power absorption was observed in the Volt-Var control, which corresponds to a
30.5% reduction compared to the fixed PFC.

A significant increase in network loss could be seen in all control techniques compared
to the base-case scenario. The highest daily average network loss was reported with the
fixed PFC technique due to the unnecessary reactive power absorption, even in occasions
where voltage was not at risk of being violated. This was a 10.8% increase compared to
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the operation of PV inverters with a unity power factor. In the scheduled and PFC as a
function of injected active power control techniques, the daily average network losses were
lower than those of the other controls owing to the elimination of the excessive reactive
power absorption. While the Volt-Var control was the lowest in daily reactive power
compensation, it was the second-highest control in daily average network loss. This was
mainly due to the fact that the reactive power passed over a long distance (high impedance)
as the reactive power absorption occurred further away from the distribution transformer.

As listed in the table, in the studied PFC techniques, the power factor limit of the
inverter varied at a defined value, and the minimum power factor value assigned to these
controls was 0.97. However, in the Volt-Var control, a wider power factor range (1.00 to
0.90) is required compared to those required by the other controls. Figure 12 presents the
variations of the power factors of PV systems connected to each customer during peak PV
generation with the PFC and Volt-Var controls. As can be seen in Figure 12, in the Volt-Var
control, the power factor value decreased from unity in each branch as the customer was
pushed further from the starting point of the branch.

Figure 12. Variation of the power factor with the customer number.

As a consequence, the power factor of the PV inverter connected to the network’s
furthest node reached closer to 0.90 to maintain the terminal voltages within the admissible
limits. However, all power factor values assigned or obtained by each technique fell within
the Malaysian guidelines. In addition, the findings reflect the importance of using an
oversized PV inverter (to enhance the reactive power capability) in Volt-Var control for
customers who are located far from the distribution transformer in order to successfully
suppress the overvoltage issues.

5. Conclusions

This paper explored the performance of four reactive power control techniques for PV
inverters—namely, fixed PFC, scheduled PFC, PFC as a function of injected active power,
and Volt-Var control—in mitigating overvoltage issues due to the high integration of PV
systems. A detailed study was conducted on a typical Malaysian LV distribution network
to analyze and review these control techniques in terms of the number of customers with
voltage violations, reactive power compensation, and network losses. The main findings
drawn from the research can be presented as follows.

• The studied reactive power control techniques are successful in overcoming the voltage
problems of typical Malaysian networks.

• Every technique comprises inherent drawbacks that must be considered for imple-
mentation.
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• Because some of the controls compensate for excessive reactive power, which con-
tributes to high network losses, the incorporation of efficient reactive power control
techniques that provide effective voltage control while optimizing excessive reactive
power compensation and network losses is required.

• The Volt-Var control of solar PV inverters outperforms the other control techniques by
providing effective voltage regulation while requiring less reactive power compensation.

• The strengths and weaknesses of the studied reactive power control techniques could
assist DNOs in making more rational decisions when implementing these controls to
resolve overvoltage issues.

Future work will focus on the coordination of active power curtailment and reactive
power compensation control strategies for solar PV inverters in order to achieve effective
voltage regulation while increasing the PV-hosting capacity.
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